Leetcode解题-LRU Cache

描述

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

分析

要求实现一个LRU cache,有两个要点:

  1. get, set操作都应该是O(1)的,否则就失去了cache的意义
  2. 要保持LRU的语义

所以我们用一个哈希表外加一个双向链表完成(单项链表无法做到O(1))。用hash表来迅速定位到节点,每次访问一个节点后,将这个节点移动到链表头部(move_to_head),当cache到达capacity上限时,从链表尾部删除节点。

代码

Python

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Definition for doubly-linked list.
class ListNode(object):
def __init__(self, key, val):
self.key = key
self.val = val
self.next = None
self.prev = None

def __repr__(self):
return str(self.val)


class LRUCache(object):

def __init__(self, capacity):
"""
:type capacity: int
"""

self.capacity = capacity
self.size = 0
self.dummy_head = ListNode(None, -1)
self.dummy_tail = ListNode(None, -1)
self.dummy_head.next = self.dummy_tail
self.dummy_tail.prev = self.dummy_head
self.store = {}

def print_list(self):
cur = self.dummy_head.next
while cur != self.dummy_tail:
print cur.val, '->',
cur = cur.next
print

def move_to_head(self, node):
if node == self.dummy_head or node == self.dummy_tail:
return
if node.prev:
node.prev.next = node.next
if node.next:
node.next.prev = node.prev
node.prev = self.dummy_head
node.next = self.dummy_head.next
self.dummy_head.next.prev = node
self.dummy_head.next = node

def get(self, key):
"""
:rtype: int
"""

node = self.store.get(key, self.dummy_head)
self.move_to_head(node)
return node.val

def set(self, key, value):
"""
:type key: int
:type value: int
:rtype: nothing
"""

if key in self.store:
node = self.store[key]
node.val = value
self.move_to_head(node)
elif self.size < self.capacity:
node = ListNode(key, value)
self.move_to_head(node)
self.store[key] = node
self.size += 1
else:
last = self.dummy_tail.prev
del self.store[last.key]
last.val = value
last.key = key
self.store[last.key] = last
self.move_to_head(last)

热评文章